

Unpatched Design Vulnerabilities in Cellular Standards

Yongdae Kim

SysSec@KAIST

joint work with many of my students and collaborators

Cellular Security Publications

- Location leaks on the GSM Air Interface, NDSS'12
- 2. Gaining Control of Cellular Traffic Accounting by Spurious TCP Retransmission, NDSS' 14
- 3. Breaking and Fixing VolTE: Exploiting Hidden Data Channels and Mis-implementations, CCS'15
- When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks, EuroS&P'17
- 5. GUTI Reallocation Demystified: Cellular Location Tracking with Changing Temporary Identifier, NDSS'18
- 6. Peeking over the Cellular Walled Gardens: A Method for Closed Network Diagnosis, IEEE TMC'18
- 7. Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane, S&P'19
- 8. Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE, Usenix Sec'19
- 9. Hidden Figures: Comparative Latency Analysis of Cellular Networks with Fine-grained State Machine Models, Hotmobile'19
- 10. BASESPEC: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols, NDSS'21
- 11. DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices, Usenix Sec'22
- 12. Watching the Watchers: Practical Video Identification Attack in LTE Networks, Usenix Sec'22
- 13. Preventing SIM Box Fraud Using Device Fingerprinting, NDSS'23

Cellular Security: Why Difficult? Meta

- ❖ New Generation (Technology) every 10 years
 - New Standards, Implementation, and Deployment → New vulnerabilities
- Generation overlap: e.g. 3G, LTE and CSFB vulnerabilities in CSFB
- Backward compatibility: e.g. supporting 2G
- ❖ Government > Carrier > Device vendors > Customers ☺
- Walled Garden
 - Carriers and vendors don't talk to each other.
 - Carriers: (Mostly) No response to responsible disclosure
- ❖ New HW/SW tools are needed for each generation.
 - Slow/imperfect open-source development (Thank you, SRS)
 - Still waiting for 5G SA radio (USRP was useful for LTE)

Cellular Security: Why difficult? Standard

- ❖ Complicated and huge standards → Hard to find bugs, need a large group
 - Multiple protocols co-work, but written in separate docs
- Quite a few unpatched design vulnerabilities
- Standards are written ambiguously
 - Misunderstanding by vendors and carriers
 - Spec → State machine for formal analysis
- Leave many implementation details for vendors
- Cellular networks/devices could be different from each carrier and vendor
 - Therefore, vulnerabilities are different
- Conformance testing standard, but (almost) no security testing standard

1. Unauthenticated Broadcast

- eNB broadcasts System Information (SI) periodically
 - MIB, SIB, Paging Message
- No authentication whatsoever

Fake CMAS broadcast attack

Signal Overshadowing: SigOver Attack

- Signal injection attack exploits broadcast messages in LTE
 - Broadcast messages in LTE have never been integrity protected!
- Transmit time- and frequency-synchronized signal

Demonstration of Signal Injection attack DATA RESTRICTIONS

2. Unauthenticated Unicast

Types

- Pre-authentication messages: Attach/Identity/Authentication/TAU Request
- Reject messages: Attach/TAU reject, Authentication failure

3. Unprotected Control Channel

- Downlink Control Information (DCI)
 - Requested resource by the UE
 - Scheduling information of a UE
- MAC Control Element
 - Carrier Aggregation (CA) Information
 - # of Secondary Cell

4. Linkable Identities

- ❖ 2G, 3G: unchanging TMSI
- ❖ 4G: unchanging GUTI → Changing but linkable → Mandatory unpredictability but no one implements
- 5G: Mandatory unpredictability, but have not seen any deployed one
- * RNTI, GUTI, ···: Application level binding

Etc.

- Still symmetric key-based key management
- Lawful interception
 - Voice call/SMS, location tracking
- eSIM vs. Physical SIM
 - SIMswap vs. SIMClone
- IMEI Spoofing

Network-based Voice Phishing Defense

3 Projects

- Advanced Stingray
- Cellular Communication under Adversarial Network
- ❖ 6G Security Standardization after finding more design bugs

Questions?

Yongdae Kim

- email: yongdaek@kaist.ac.kr
- Home: http://syssec.kaist.ac.kr/~yongdaek
- Facebook: https://www.facebook.com/y0ngdaek
- Twitter: https://twitter.com/yongdaek
- Google "Yongdae Kim"

